Buernutional Jowrval of Theoretical Phpsizs, VoL, Vo, 3 (1973), op: 241-251

“The Concomitants of Spinors of Type [3/2, 1/2}
in Space-Time’

B.. DODDS
Mathemntics Department, Heriot-Watt University, Chambers Street, Edinburgh
Received: 16 May 1972

‘ Abstract
Explicit forms for the concomitemts which are bilinesr in two sninovs of type [372, 1/2]
and the concomitants swhich are quadratxc ina smgie spinor of type [3 1/2] are obtained.
The dual-tensors, where they esist, are also given. ’

The concomitants of hxgher-erdcr spinors can be obtained in un exactly stmiler manrer.,

1. Introductios

LY

The definition of spinors is dependent upon
matrices. In four-dimensional space-time, where the metric is taken to

have signature -+-2, the anticommuting set of matrices X, is taken zs that

the frame of mzﬁcémmming

ns,cdr by Littlewoond (1972}, namely
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Defining the metric tensor as

gijzg't!: 3 (i":j; i;j=13233)$~
-1 (i=j=0}
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242 B, 0ODDS
it follows that
) LR = X, #=1,2.3%
(X XP = (x Xl}zm&j-"ix"“ﬁ‘”"f{%xs,
which will be taken as the metric of space-time.
Corresponding to any Lorentz transformation, L say, as given by
x=alx, (=1,2,3,0),

there is 2 matrix U, the basic spin matrix, which is unique apart from sign
such that

and hence

g‘j XJ = U‘“i »X} U,

where [2,7] is 2 Lorentz matrix whose elements thus satisfy the ‘orthogonal’
relations 4
Ayl = Bye aa) = gb, ‘ 1.2}

A fouc-rawed 1eal vector which, under L, is transformed by U, is called
2 basic spinor. By considering the divect prodnet of a simple tensor of type
{n}and a basic spinor, on removal of the contractions present, an irreducible
symmeiric spinor of iype [+ /2, 1/2] s vbiained, » being a positive
integer. Explicit forms for such spinors have been given elewhers {(Dodds,
1972). If ¥, ..., is an irreducible symmetric spinor of type [n -+ 1,2, 172},
it consists of (2 + 3)Yn131 real four-vectors of which just {(n+ 2) '/n”‘ are
independent because ofthe zero contractions X' Viert, =0= g2l . f

The concomitants which are bilingar in two spmors of type {ﬂ 41 j2 L 2}
and the concomitants which are guadratic 7t 2 single spinor of type-
[m1/2,1/2], are of types given by the expansions of the products
n-- 12, 121 e+ 1/2,1/2] and [n-+1/2, 1/2] R {2} respectively. In the
case of basic spinors, i.e. when 7 = 0, it is well knowa that the concomitants
which are bilinear in two basic spinors.are five in number, consisting of an
invariant, a pwude«mv&nant a four-vector, a pseudo four-vector “and a
six-vecter. When the basic spinors are made equal to give the concomitants
which are quaﬁ atic in a single basic spinor, just the four-vector and the
six-vector survive, This paper is concerned with the analysis of the higher-
ordercase when n = I, l.e. when the spinor or spinors are of Lype M/E 1/2}.

In order to illustrate later results, a particular reference frame is used.
Sappose that W and Z are two basic spinors and that £; and », are two
tensors of type {1}. Putting W, =& Wand Z, = n, Z, then ¥V, and Y, where
X'V =0=X'Y, are two irreducible spinors of type [3/2, 1/2] where
(Dodds, 1972) :

= W= XX WY, Yi=Z - X(XOZ)f4  (L3)

Following Littlewood (1969, 1972}, the particular reference frame is
chosen in which one of the basic spinors, Z say, is in canonical form. Hence,
in this reference frame, the basic spinors are given by

W=={aB,v.8, Z=[90,0]
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where 2, £, ¥, 4 2nd ¢ are veal scalars, Writing
W} w= &y, £ B, 517, £:8) = §otes Biayen 641
say, and similarly,
Z,;=12,0,0,0
using {1.1} and (1.3} it follows that
Py=3A4,B,C, Dd
say, where

Ag=3g -+ B +83+ o,  Az=—Py+ 30— }‘3"‘%
=3fy — ag— y3+ tte, By=n,+43f; ~ 8;:— B,

Ci=3p— 062+ s+ 8o, Co=8&+3:+ 82— Yo,
=38y + Y2 83+ Yo» Dy =y 4+ 38; + 3+ b,

(1.4
Ay=-dy -ty + a5t ye,  Ao= i ot st 22,
By=1y, “‘"53"‘351"'59 Bazﬁl*ﬁz*dz+3ﬁm
C3=‘“‘B - g o} «;3 %‘% Cﬁ‘“‘é; “"}'2"%‘&3*%’3}’0,
Dy=a,~ )82‘5“3 3“}%; Do =3, +8;— B3+ 34,
and
I 3¢ " ‘ " 3e, + 55 | T 3ey 7
—~&; + &g _ 2. . o
Ti=3] g i L=il o 0 Ys-%[_,w% :
i &3 N R 0 N &1
2+ 32 ]
&
Yo:'} 5:
M atl B
Also, since X' V=0, it follows that ’
Ay —Dy— Dy—By=0, —B,—A;—Cs+ Ay = :
Ay — Ly — Dy~ By =0, By —A; —Cs+ Ap =0, (1.5

Cz'jf‘_ﬂ.z“Bs“Do=0, Dy 4+ Gy~ A+ Cy=0.

2.

‘Suppose that L(+,+), L(+,—), L{—,+) and L{~-) represent Lorentz
transformations belonging to the four separate ‘pieces’ of the Lorentz group,
the first sign denoting the sign of the dererminant of the transforming
- matrix, whilst the second sign denotes whether the transfomiation leaves
unchanged {4-) or reverses (—) the direction of the time-axis. Because of the.
differing properties portrayed by the basic spin matrix corresponding to a
transformation L{ ,‘T‘}, L(+,~), L(~,+) and L{—,—), (sec, for example,

noééq 19710y, 1 is cnhwp\nmni nmhﬁ:h to rnnqrjgr‘ a transformation

HE LY 5




44 B. DODDE

L4 4), theextension o the f‘uﬁ Loreniz group being given at the conclusion

of the snalysis.

Cﬂns;der then a transformation E{+,4), x = o,'x; say. The corre-
sponding basic spin matrix is U where

‘ al X,=U" X, U 2
and (Dodds, 1971b) . ,
U~ =-10T
| 0TU=T, Up=9U,
where Xy =T and Xg_ Xz Xz XQ == ¢¢ Under L(+,+),
yi“‘“)‘ Ua{i Vﬁ yi — Ua{’ -Yj'
The types of the second-order concomitants are determined by ‘charac-
teristic analysis®, for a full account of the methods of which cne is referred
to Littlewood, 1944, and 1950, p. 288 et seq. Since
{14=1/2,12]+ 4,
where 4 = [1/2, 1/2], it follows that
B ARI={1} - 14
The types of the concomitants which are hilinear in two spinors of type
1312, 1/2] correspond to the product [3/2, 1/2]13/2. 1121, where
B2 Y23372, 121 = ({1} ~ D1}~ D 42
== ({2} 4+ {12} - 2{1} + ) Q2{0} + 2{1} + {17}
= {31} + {1+ 203} + 2021} + {17} + {0}~ 2{1}
(since 21°} ={2} + {1} ~ {0} and {1*} = {0} here)
= 311+ 12%+ 2[3]+ 2121 + 2021 + 2{17] 4 2[1] + 2[0].
. 2.3)
Asacheck, the L.H.8. contains (12)° = ]44 terms, whilst the R.H.S. contains
304+ 104 2(16)+ 2(16) + 209y + 2(6) + 2{4) + 2(1) = 144 terms as requ:z‘ed
The types of the concomitants which are qwdmuc in z single spinor of
type [3/2, 1/2] correspound to the product [3/2, 1/2} % {2}, where
I3[2 12 ® {3 ={114-4) @2
=({1}4).8 {0}4 ® {17} - (1}14) @ {(1}4 & {1}
+({1}4) ® {214 © {0}
=4 @ {1 - {14 +{1}4) ® {2
=4 @ {17}~ {1} 42 "r{l} ® {214 Q {2}
+{1} @ {134 ® {1%}
=2{0} + {1} — {1} Q0r + 2{1} + {P*H + {1 + {1*D
+ {17201 + {1} '
=B+ 8+ 2+ {13+ {0 -2~ {1}

=pBH+Bi+RHF2APIH O 2.4

2.2}
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As a check, the L.H.S. contsins (121T1H1P (121211011 =78 iﬁrms,
whilst the R H.S. contains 38 ~p 164 e 16 4 2{5) -4 = TR terms as Y'qu'lﬁf?»l'{
Having obtained the types of the second-order concomiiants, it remuiny
to determine explicit forms for them. This is done by considering quantities
of various rank which are bilinear in the spinors ¥, and ¥,. In these con-

siderations, one is only interested in those quantities which are both non-
zero and irreducible, nuxanhhps which are zero or reducible existing heranse

Seanailatay WASIuas G RAdCLIEE WAt iy

* of the zero contractions X ¥ =0= XY, from which follnw the formulae

PETX, X, =27, T, V*TX, X, X, =20V, TX,— V,TX)
XrYV,=27, BEXV=2X, V- V), (Lj=1230),
25
together with similar formulae for ¥, MNote that the mairix ¢ may be
introduced into the above formulae, since ¢ anticonmutes with sach of
th%?lr;nnt!es of rank zero are considered firsi. Thers are just twe such

‘iuantmes, non-zero and irreducible, viz. ¥*TV, ané Frrov,. After
tuansinrmation,

v, de) FOTUV, =g .7V, = I*TV,,
where (1-2yand {22y bave been used. Similarly, - ‘
T4V, - TETHV,

since, from (2.2), U = Ud. Hence both 7*T¥, and ¥*T4 1, are complete
tensors of rank zero.

Considering next quantities of rank one, there are just iwo such guantities,
viz. ¥?TX,V, and Y?TX,¢$V,. After transformation,

- . - =~
YrTX, Y, 0" a}t T, 0TX UV, =" T, 0TV X, Vs = o TPTX,V,,

_where (1.2), (2.1) and (2.2) have been used. Si’}"ﬁﬁﬂ}, VPTY BV, —
a” Y*TX,dV,, and hence both ¥2TX,V, and F*TX,4V, are complete
tensors of ram{ one.
Consxdermg next quant;txec of rank two, there are just four such quanti-
ties, viz. YPTX, X,V,, Y°?TX, X,V Y,TV} and ¥, T¢V,, each of which,
in the manner of the preceding cases, is found to be a complete tensor of
rank two, Similarly there are just two compiete.tensors of :arxlc thrée, viz.
¥, 7x,V, and Y,TY ¢V, and just two complete tensors of rank four, viz.
¥.7x, XV, and ¥.TX, X, ¢V, All quantities of rank >4 are either
idertically eqaa.l to zero or are reducible to quantities already considered
of 1ank <4.
Twelve complete tensors of various ranks are thus obtained from which
the concomitants are to be constructed. In constructing simple tensors

from fhocp r_‘gmple‘le f- 20rs, since one is in four diﬁlfﬂﬁaf}uu, it is uﬁ.l)r
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pecessary to consider partitions inio not more than two parts. It is con-
venient tn write, for example, “the coucomitant of type 311k, pY as

shorthand for ‘the concomitant of iype [31] corresponding 1o the standard

+ & 7.5

Young Tableau (;‘I k) .

The concomitants which are linear in each of ¥, and ¥, are considered
first. They are fourteen in pumber, their types being given by the character
egnztion {2.3). The concomitants of type 10} and [1] are just the complete
tensors of ranks zero and one respectively. The concomitants of types [2]
and [1?] are obtamed from the complete tensors of rank two by operating
on the tensors with the necessary symmetvising operators to give simple
tensors of types {2} and {1%} = [1?]. Removal of the contraction with the
meiric tensor from the simple tensors of type {2 3 will vield stmple fensors
of type [2] as Teguired. Note that since X, X, is skﬂw«samraemcﬁ no term
of type [2] is obtained from either V?7X, ¥, ¥, or F*TX, X,¢V,. Further,
since X; X; ¢ is exactly and premse?‘f the dnal of X, X, when the tensors of
type [1%] are being constructed, it is not necessary to consider both of the -
complete tensors Y?TX, X, ¥, and ¥?TX, X " ¢V, since the tensor of type
[13] eonstructed from the lattor will be simply the dual of the tensor of tvpe
132} construcied from the former. The concomitants of types [3] and ;_'?13
are construcied fruc: the complete tensors of rank three by a similar process
of symmetrisaiion and sontraction with the metric tensor. Note that corre~
spmding to the partition {21), there are ivo standard Young Tableaux,
viz. (i, k) and (/%, 7}, and hence two corresponding symmetrising operators
(see, for example, Dodds, 1971a, Appendix), Finally the concomitants of

type [31] and [2°] are constructed from the complete tensors of rank four,

z. ¥,TX;X,V, and ¥,TX,X,¢V,. Note firsily that there is no con-
comxtant of type [4] because X, X, is skew~syrrmetnc Secandly, in con-
structing the concomitants of type [3?] and [2°], it is only necessary 1o
consider one of the complete tensors of rank four, ¥,7X, X, ¥, say, since
the second one will merely yield the duals of the tensors of types [31] and.
[2%] constructed from ¥,7X,X,V,, X;X,¢ being the dual of X, X, as
mentioned previcusty. Thus the concomitants of types [31] and [2%] are
constructed from Y,TX,X,V, by the process of symmetrisation and
coatraction with the metric tensor. Note that corresponding to the parti-
tions (31) and (2%) there are three and two standard Young Tableaux
respectively, viz. (ijk,p), (jp, k), (ikp, §); and (if,kp), (ik, jp), and hence
three and two cerrespor’ding symmetrising operators (see Dodds, 19714,
Appendm) It is found however that the concomitant of type [311(ijk, p)
is 1destica‘1y zero. A final note, formulae (2.5) are used fzeq”enﬂy in
removing the contractions with the metric tensor from the various tensors.
The concomitants which are linear in each of ¥, and ¥, are thus as follows:

[0]:F= Yerv, +F;,  [11:G,= ?TXKV,,, Gy
) R 4

1, . % -;- .
-2 Jyy = P ri— %84 h :.;
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EIJ}? H, m%(?iTyj - ?le}g e Iy=13 Fer( (X X, ~ X, X3V
BY: M5 = Pyl ¥ TX; Vi~ 850G “Migs )
R K = ¥, TX; Ve~ Y 1x. v+ ?j TX,V, ~ F.TX, V3, K.
L= KB TX, V- LTV + T TX, 7, ~ VTR V), *Lop,
‘ _ 26
Bi Ry =Y, TX, XV, + ¥, TX, X, V,+ ¥, TX, X, V;
+ VL TX XV, + L TX, XV, + P TX, X V) — Heudss
+ sy -+ Beni} + T80y Hip + 24p Hue + 250 Hyy)
+ 38y dip + Bip Bt + Bpcdisd
— (BB T 858t + B B} B V
Sipe=HVTX, X, Vo+ [, TX, X, V,+ T.TX, X, 7V,
DA ¢5 02 AEE 4 3 g0 AR ZRID A ¥ R A A
— Mgy + et + Zind) — T80 Hyp + 800 Hy
+ ot H ) ~ 24(8uTip + Bip L0 + Soi Fa)
— {88+ 8ip &+ B 80 F
22 Ny = (0 TX, XV, + 0 TX, X, Ve + ¥, TX, X,V
+ ¥, 10, X,V + LTX, X, V,+ T, TX, X, V;
L+ R TE YV LT X, V)
+ &y Tan+ Bee i} — ¥Eudip + 8oy + Bio I + 8os50)
-+ 'i’ﬁ{gu B 28nEn Zgﬂg{?}ﬂ
Qi ==V TX, XV, + T,TX, X,V + T TX, X, V,
+ 0, T X, V,+ LTX, X, V,+ ¥, TX. X, V,
=RV 9.1 V;-%»%T;{k XV
- i(gjpfu tgudip) — 15(8: 8o +8%&p+ 88 Fs
where Ky, and *Kp ?re of type [211(i,k), Ly and *L;; are of typs

[211(ik, 3, whilst Ry Sien Niss 2nd Qig, are of types [31](ip, &),
[311Gkp, 1), [2°105, kp) and [2%](ik, jp) respectively.

Firstly, note that permutation opa,rarers P appear in the forms given for
the concomitants of types [2] and (3], the operators being deﬁ*’wd as
follows: A pﬁrmuiatzon operator Py, operating on a tensor I'y, 4
say denotes the operation of taking the arithmetic mean of the 7! tensors
obtained by permuting the suffixes of I'y . in all ways. Note also that
the formula X; X_; + XX = 7gu has been used in ex xpressing Riups Sigips
Nijep and Oy, in the forms given, This explains the presence of the Fterms
in R, and Syj,,. Finally, the operation denoted by ‘+” on 2 tensor reqmrcs
the insertion of ¢ immediately prior to a ¥, term wnerevez such a term is
present in the tensor, e.g. TG, = VaTX, 6V, Since ¢* =1, the cperanon
‘44" on a tensor gwes ms: original teasor together with a sign reversal,

1‘!
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e.g. Y F = —F. As noted previousty, tbe tensors *1 ., YR *Semp "N
aﬂd sz‘ib are }Ub‘ 1hﬂ- di}al.h‘:ﬁb&)ﬁ Ul 11;‘ 1\(;&!,, Sﬁd‘."’ ‘;giﬂif aﬁd Qiﬁlﬁ
respectively, the dual tensors, where they exist, being defined shortly,

The characteristic analysis required fourteen concomitants, whereas
nincteen, as given by {2.6), have been found. It is necessary 1o define certain
dual tensors in order (o resolve this discrepancy Define the dixa; tenser=
@{Héfx Figs Kisro Lijie Rojips Sljkw Niseo 808 Oy a8 *T0yy 40 *Kon, "L,

s * S TN, and * 0, Tespectively, where

*Hyy =3B H®,  *Kip= {8 Eun+ 8jeEud K7,
= 3E 1%, *Lijp = HEi, Epe+ graEppd L7,
*Rijip = 810815 Erors + 810 8on Eitre + 8oa Gi2 Biyra) BT,
*Sune =g, 128 Ejpes  ZraBpe Esirs + BraBie Egine) ST,
*Nisip = (814 8ee Egprs + 81080t Evpes + 810800 Eics + Lig Zor Enn YN,
giﬁm ‘L(giqg;t <Eprs + 1470:47] Exprs + £148p: Ekjrs Bk gka&ui E!}fs} Qm ’

and »zm is the alternating tensor, which is defined to be egus!l to -1 i
{i,j,k,p} Is a positive permutation of (1,2,3,0), equal to —1 if 5 negative
pﬂmuﬁaﬁm and egualte yero if any suffix is repeated. The dual tensor of &
tensor is of course of the same type as the original tensor. The above dual
tensors are easily seen to define tensors of the required types. The dual
tensors YTH,, **;, eic. are defired in 2 gmﬁzv manner, e.g. TH =
3E; M,“”H‘"‘ Clearly. the operations denoted by “+” &1 “*" on a tensor are
commutative and thus, for example, **H,, = “’*H{: Further, the oneration
< where applicable. on a tensor gives the original tensor toge: 2 with
& sign reversal:
Consider K, ;, then using the definition for *X .

**Kiin = 3o Epres + By¢ Errs} *KT
= '}(giq _;kr;c -+ g;q Eikrs} gqq’ g"’ ggi *‘Kz’r’s'
= l(giq Jkrs + E1a Eﬂus ggq‘ g™ gss’(gq’ H Er’s'mn + 81 Eg':'mg} Kimn
= %{"*&fl‘\gjptght - "ckm) +g% E;kgsfﬂ o -
28 1{ i Sin = 8in 8im) + &8 Epzis Ejr ma} K™

since
ngngqq ge- g gq tEr &" rm gxiw o E:sjkEr'a’mn
. =—22{ 8 jm8kn — BnBim)s
ginjkrsgﬂ, g‘” gss’gr'IEq's‘nm = g:m" Ejiis Bty mas
and similarly for the other two termis.
Further,

Bt K o O
== (g1 8imGin + Eim&in&u + §128x1Gim — £1: BenGtm ™ EimEni Bin
v — EmBem ) K1
= gjmLin&11 — BinBim But) K77,
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and similarly,

‘ B B gyt oun K™ = A Zim Zin B1s ~ Eta B 811 K™

K= H280(Z s Bin — BB (B Zro S1i  Lie B E1t)

' =281 EimGin — Fin Zin) = {BimBin 81; — En B S} K™
M%{MZX-E'Q—QKW had Ku‘g ‘%” Kuj —— ZKJQ “”f" 2KJ&; e Kj&“x"' Kjﬁ)‘e
But, since & is of tyne {.Zi}(e},k}, Kijp = Ky 2md K+ Kyt Ky = Q.
Hence, o
P Ei~—Kipn 2.7

asrequired. Corresponding results for otherconcomitants, where appiicable,
czn be proved in a similar manaer.

ising the particular reference frame described in the introduction,

iogethor with the various d»ﬁmnoas, the following dependency relations
are obtained:

- dyy=2{Hy - FUH). ‘Iu = 2(*H i+ tH, u),

Eip -+ T & n=2Ly,,  *Kin—"Kip=2%y,
Lip=*Lyp, *Lyp="Lyp 28
Ripp+ Singo =0, *Ripp+ *Suspn=0

Nipp+ Qugr =0, *Nppe +*C0ugp=0,

where the relations on the right are the duals of the corresponding refations
on the left. In ilfustration, consider the second relation ou the right, viz.
*Kijp— "Kepp— 2% Ly =0. Take i=1, j=0 and k = 3 say. By definition,

" ®Ky03 =M Egses K1 = Ep3ps KO = H~Kiy2 + Kiag + Koze ~ Kaoa)-

But . »
K =—4K12 and Kozo =4 Koaz.
Hence, )
" Aoz =K1z + Koo2)
Similarly, :
' *Liso=Lyga+ “-;002-
Hence,

_*Kms — K03 — 2% Lq30 = 3K 112 + Kooz) — *Kipz ~ 2(Lys2 + Loo2)
=-H{OTX, V.- LT V) + (T Va+ BV
(P TXooVi— FaTXo oV, + ToTX OVs— VaTX, V)
+ 2T TX Vi~ TV )+ 24T, TX Vo — T TXL Vo))
=H{—4,+ B2+ Dy + Bo)e, +{B, + 4, +Cs— Ao)eo}
=) (using {1 5}) .
Other sufﬁxes may be cho%n mvmg a similar zero rcsuit and hence

Alﬁ L‘;k 2 Lium‘.}aﬁ “ ‘ d(
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 In the light of dependency relations (2.8), it is seen that just fourteen of
the ninetecn concomitants, as given by (2.6), are independent, thus agreeing
with the earlier chaxactensm, avaiysss The fourteen concomitants are
- taken to be

F, *F, G +st -Hi_{s '}H{gﬁ» Iy Wy
; Eig. *Kyjoo Mips "Min. Nipy Rip
as given explicitly in (2.6} ‘
The concomitants which are quadratic in 2 single spinor oftype [3/2, 1/2]
are now determined. From the earlier characteristic analysis, (2.4}, they
" are six in number, one each of types {31}, 3], 1211, [1] and two of type [17]
Explicit forms for these concomitanis are obiained, quite simply, by
putting ¥, = V] in each of the concomitants which are bilinear in ¥, and
¥, just obtained. Since -

13/2,1/2] ® (2} =311+ 3]+ 21] + 2‘121 +[1]

B2 1j2} ® {17 = [27] + [3] + 211+ 2021 + [1] + 2[0]
the character equation (2.3} may be rewsitten in the form
B2, 120032, 1721 = 1372, 1721 ® {2} + 13/2, 1/2) ® {i%.

The concomitants which corrﬁspsnd to [3/2, 1/2] & {2} are symmetric in
the two groundforms and hence survive when ﬁc greundforms are made
equal. On the other hand, the concomitants which correspond o [3/2, 1/2]
® {17} 2re skew-symmetric in the groundforms and will thus become zero
when the groundforms are made equal. it is easily scen that the con-

- comitants which arz skew-symmetric in the spinors are F, *F, *G,, J,,,

s Ko M and Nypo, all of which will thus become identically zero
when the spinors are made equal. The concomitants which are quadratic
in a single spincr of type [3/2, 1/2] are thus as follows:

:Gi=PTx,V; [P H,=YP.TV,- V,Tv), *H,;

PRI *Kn =¥ TX, ¢V, — V. TX; ¢V, + 7, TX, 6V, — -V TX, 6V);

B3] Mm—“fm(; TX,; Vi~ 48,6 - ’ 2.9}

Bi}: Ry = A TX, 5V, + V,TY, XV, + 7, TX, X, V,+ v, TX‘Xk

+ P IX, X5 Vi+ FiTX, X, V)

+ 1580 Hip + 810 Hut + 250 Hyj)

_ + 2508l + 2o b + 2o L)

where here, )
=3V T(X, X; — X, X))V, = 2H,;— **H,));

The concomitants in both instances are thus explicitly dér.ermined, and
“one is now in a position to remove the restriction, applied earlier in the
. annlvcm of onncu{prmc nnlv T orentz francrnrmahnrq IH_ .-\ ir N 15 the
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basic spin matrix corresponding to a transformation (i) L{-%,««) (i) L{«-»,«r),
(i) L), then

] - U =707, DIU=-T, Ug=¢U:
(i) U“‘* =101, U10U=7, Ug =—4T;
(i) U =707, UT0=-F, Up=—4U;

(cf. (2.2)). In the tight of these relations, exactly which of the concomitants
are of the pseudo-type corresponding 1o a particular Lorentz transforma-
tion is easily determined, hence extending the analysis to the full Lorentz
group. Thus, cormspondmg to a transformation @) £{+ -, (i} Ly }2
i) L),

(@ all of the concomitants are of the pseudo-type;
{i) ‘*"F Gy YHyy, s T K M 1w are of the pseudo-type;
G} F, G, HiyJis Rijas Migis N jase Ripsp are of the pseudo-type.

For cxam;alc, under atransformaﬂonli{—» —3, Hy; sav et only transforms o
" Bke a tensor of type [#7], it also ﬁd@rgaes a c"gangt: in sign. ’

The concomitants of higher-order spinors can be znaiysed in an exnctly
' similar manser,
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